Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612881

RESUMO

Gadolinium-based contrast agents (GBCAs) have been used for more than 30 years to improve magnetic resonance imaging, a crucial tool for medical diagnosis and treatment monitoring across multiple clinical settings. Studies have shown that exposure to GBCAs is associated with gadolinium release and tissue deposition that may cause short- and long-term toxicity in several organs, including the kidney, the main excretion organ of most GBCAs. Considering the increasing prevalence of chronic kidney disease worldwide and that most of the complications following GBCA exposure are associated with renal dysfunction, the mechanisms underlying GBCA toxicity, especially renal toxicity, are particularly important. A better understanding of the gadolinium mechanisms of toxicity may contribute to clarify the safety and/or potential risks associated with the use of GBCAs. In this work, a review of the recent literature concerning gadolinium and GBCA mechanisms of toxicity was performed.


Assuntos
Líquidos Corporais , Meios de Contraste , Meios de Contraste/efeitos adversos , Gadolínio/toxicidade , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética
2.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542300

RESUMO

Worldwide, the number of elderly individuals receiving chronic hemodialysis is rising. The aim of our study was to evaluate several clinical and analytical biomarkers in chronically dialyzed patients and analyze how they change with age. A cross-sectional study was performed by evaluating 289 end-stage renal disease patients undergoing dialysis. We evaluated the hemogram, adipokines, the lipid profile, and several markers related to inflammation, endothelial function/fibrinolysis, nutrition, iron metabolism, and cardiac and renal fibrosis. Clinical data and dialysis efficacy parameters were obtained from all patients. The relationships between studied biomarkers and age were assessed by a statistical comparison between younger (adults with age < 65 years) and older (age ≥ 65 years) patients and by performing regression analysis. Participants presented a mean age of 68.7 years (±13.6), with 66.8% (n = 193) being classified as older. Compared to younger patients, older patients presented the following: (a) significantly lower values of diastolic blood pressure (DBP) and ultrafiltration volume; (b) lower levels of phosphorus, uric acid, creatinine, and albumin; and (c) higher circulating concentrations of tissue-type plasminogen activator (tPA), D-dimer, interleukin-6, leptin, N-terminal pro B-type natriuretic peptide, and tissue inhibitor of metalloproteinase-1. In the multiple linear regression analysis, DBP values, tPA, phosphorus, and D-dimer levels were independently associated with the age of patients (standardized betas: -0.407, 0.272, -0.230, and 0.197, respectively; p < 0.001 for all), demonstrating relevant changes in biomarkers with increasing age at cardiovascular and nutritional levels. These findings seem to result from crosstalk mechanisms between aging and chronic kidney disease.


Assuntos
Falência Renal Crônica , Inibidor Tecidual de Metaloproteinase-1 , Adulto , Humanos , Idoso , Estudos Transversais , Diálise Renal , Falência Renal Crônica/complicações , Biomarcadores , Fósforo
3.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396832

RESUMO

The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and peroxiredoxin 2 (Prx2) are particularly important in erythroid cells. Reticulocytes and other erythroid precursors may adapt their biosynthetic mechanisms to cell defects or to changes in the bone marrow environment. Our aim was to perform a comparative study of the mRNA levels of CAT, GPX1, PRDX2 and SOD1 in reticulocytes from healthy individuals and from patients with hereditary spherocytosis (HS), sickle cell disease (SCD) and ß-thalassemia (ß-thal), and to study the association between their transcript levels and the reticulocyte maturity indices. In controls, the enzyme mRNA levels were significantly correlated with reticulocyte maturity indices for all genes except for SOD1. HS, SCD and ß-thal patients showed younger reticulocytes, with higher transcript levels of all enzymes, although with different patterns. ß-thal and HS showed similar reticulocyte maturity, with different enzyme mRNA levels; SCD and HS, with different reticulocyte maturity, presented similar enzyme mRNA levels. Our data suggest that the transcript profile for these antioxidant enzymes is not entirely related to reticulocyte maturity; it appears to also reflect adaptive mechanisms to abnormal erythropoiesis and/or to altered erythropoietic environments, leading to reticulocytes with distinct antioxidant potential according to each anemia.


Assuntos
Anemia Falciforme , Esferocitose Hereditária , Talassemia beta , Humanos , Reticulócitos , Talassemia beta/genética , Antioxidantes , RNA Mensageiro/genética , Superóxido Dismutase-1 , Esferocitose Hereditária/genética , Anemia Falciforme/genética
4.
Sci Adv ; 10(3): eadk6524, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241373

RESUMO

Pulmonary hypertension (PH) can affect both pulmonary arterial tree and cardiac function, often leading to right heart failure and death. Despite the urgency, the lack of understanding has limited the development of effective cardiac therapeutic strategies. Our research reveals that MCJ modulates mitochondrial response to chronic hypoxia. MCJ levels elevate under hypoxic conditions, as in lungs of patients affected by COPD, mice exposed to hypoxia, and myocardium from pigs subjected to right ventricular (RV) overload. The absence of MCJ preserves RV function, safeguarding against both cardiac and lung remodeling induced by chronic hypoxia. Cardiac-specific silencing is enough to protect against cardiac dysfunction despite the adverse pulmonary remodeling. Mechanistically, the absence of MCJ triggers a protective preconditioning state mediated by the ROS/mTOR/HIF-1α axis. As a result, it preserves RV systolic function following hypoxia exposure. These discoveries provide a potential avenue to alleviate chronic hypoxia-induced PH, highlighting MCJ as a promising target against this condition.


Assuntos
Hipertensão Pulmonar , Animais , Humanos , Camundongos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia , Pulmão , Miocárdio , Artéria Pulmonar , Suínos
5.
Nat Cardiovasc Res ; 2: 2023530-549, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37745941

RESUMO

The Notch pathway is a major regulator of endothelial transcriptional specification. Targeting the Notch receptors or Delta-like ligand 4 (Dll4) dysregulates angiogenesis. Here, by analyzing single and compound genetic mutants for all Notch signaling members, we find significant differences in the way ligands and receptors regulate liver vascular homeostasis. Loss of Notch receptors caused endothelial hypermitogenic cell-cycle arrest and senescence. Conversely, Dll4 loss triggered a strong Myc-driven transcriptional switch inducing endothelial proliferation and the tip-cell state. Myc loss suppressed the induction of angiogenesis in the absence of Dll4, without preventing the vascular enlargement and organ pathology. Similarly, inhibition of other pro-angiogenic pathways, including MAPK/ERK and mTOR, had no effect on the vascular expansion induced by Dll4 loss; however, anti-VEGFA treatment prevented it without fully suppressing the transcriptional and metabolic programs. This study shows incongruence between single-cell transcriptional states, vascular phenotypes and related pathophysiology. Our findings also suggest that the vascular structure abnormalization, rather than neoplasms, causes the reported anti-Dll4 antibody toxicity.

6.
iScience ; 26(8): 107327, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37539031

RESUMO

Clathrin assembles at the cells' plasma membrane in a multitude of clathrin-coated structures (CCSs). Among these are flat clathrin lattices (FCLs), alternative clathrin structures that have been found in specific cell types, including cancer cells. Here we show that these structures are also present in different colorectal cancer (CRC) cell lines, and that they are extremely stable with lifetimes longer than 8 h. By combining cell models representative of CRC metastasis with advanced fluorescence imaging and analysis, we discovered that the metastatic potential of CRC is associated with an aberrant membranous clathrin distribution, resulting in a higher prevalence of FCLs in cells with a higher metastatic potential. These findings suggest that clathrin organization might play an important yet unexplored role in cancer metastasis.

7.
Front Endocrinol (Lausanne) ; 14: 1240064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635971

RESUMO

The uterus-lining endometrium is essential to mammalian reproduction, receiving and accommodating the embryo for proper development. Despite its key role, mechanisms underlying endometrial biology (menstrual cycling, embryo interaction) and disease are not well understood. Its hidden location in the womb, and thereby-associated lack of suitable research models, contribute to this knowledge gap. Recently, 3D organoid models have been developed from both healthy and diseased endometrium. These organoids closely recapitulate the tissue's epithelium phenotype and (patho)biology, including in vitro reproduction of the menstrual cycle. Typically, organoids are grown in a scaffold made of surrogate tissue extracellular matrix (ECM), with mouse tumor basement membrane extracts being the most commonly used. However, important limitations apply including their lack of standardization and xeno-derivation which strongly hinder clinical translation. Therefore, researchers are actively seeking better alternatives including fully defined matrices for faithful and efficient growth of organoids. Here, we summarize the state-of-the-art regarding matrix scaffolds to grow endometrium-derived organoids as well as more advanced organoid-based 3D models. We discuss remaining shortcomings and challenges to advance endometrial organoids toward defined and standardized tools for applications in basic research and translational/clinical fields.


Assuntos
Endométrio , Útero , Feminino , Animais , Camundongos , Ciclo Menstrual , Membrana Basal , Organoides , Mamíferos
8.
Front Psychiatry ; 14: 1157710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484671

RESUMO

The main purpose of this preliminary study was to investigate a potential relationship between early maladaptive schemas (EMSs) and impulsive and compulsive buying tendencies in a sample of young adults (college students). This research adds to the cognitive perspective of consumer behavior that the cognitive schemas putatively associated with early experiences may have a strong impact on impulsive and compulsive buying. Data was obtained from 365 participants in a cross-sectional study design. Participants completed an online survey with the following instruments: Young Schema Questionnaire; Impulsive Buying Tendency Measurement Scale; Richmond Compulsive Buying Scale; and Hospital Anxiety and Depression Scale. Using multiple linear hierarchical regressions, we confirmed that the domain of over vigilance and inhibition schemas was positively associated with impulsive and compulsive buying tendencies, while an opposite association was found for the domain of impaired limits. Being a female was also a predictor of impulsive buying and compulsive buying. The results were discussed in terms of the coping mechanisms to deal with negative emotions, as a way to obtain rewards, or as a way to escape painful self-awareness. Other mechanisms related to the internalization of perfectionist expectations and the propensity to shame were also explored.

9.
Mol Ther Nucleic Acids ; 33: 57-74, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37435135

RESUMO

Genome engineering has become more accessible thanks to the CRISPR-Cas9 gene-editing system. However, using this technology in synthetic organs called "organoids" is still very inefficient. This is due to the delivery methods for the CRISPR-Cas9 machinery, which include electroporation of CRISPR-Cas9 DNA, mRNA, or ribonucleoproteins containing the Cas9-gRNA complex. However, these procedures are quite toxic for the organoids. Here, we describe the use of the "nanoblade (NB)" technology, which outperformed by far gene-editing levels achieved to date for murine- and human tissue-derived organoids. We reached up to 75% of reporter gene knockout in organoids after treatment with NBs. Indeed, high-level NB-mediated knockout for the androgen receptor encoding gene and the cystic fibrosis transmembrane conductance regulator gene was achieved with single gRNA or dual gRNA containing NBs in murine prostate and colon organoids. Likewise, NBs achieved 20%-50% gene editing in human organoids. Most importantly, in contrast to other gene-editing methods, this was obtained without toxicity for the organoids. Only 4 weeks are required to obtain stable gene knockout in organoids and NBs simplify and allow rapid genome editing in organoids with little to no side effects including unwanted insertion/deletions in off-target sites thanks to transient Cas9/RNP expression.

10.
Biomedicines ; 11(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37189644

RESUMO

Left ventricular hypertrophy (LVH) is a common cardiovascular complication in end-stage kidney disease (ESKD) patients. We aimed at studying the association of LVH with adiponectin and leptin levels, cardiovascular stress/injury biomarkers and nutritional status in these patients. We evaluated the LV mass (LVM) and calculated the LVM index (LVMI) in 196 ESKD patients on dialysis; the levels of hemoglobin, calcium, phosphorus, parathyroid hormone, albumin, adiponectin, leptin, N-terminal pro B-type natriuretic peptide (NT-proBNP) and growth differentiation factor (GDF)-15 were analyzed. ESKD patients with LVH (n = 131) presented higher NT-proBNP and GDF-15, lower hemoglobin and, after adjustment for gender, lower leptin levels compared with non-LVH patients. LVH females also showed lower leptin than the non-LVH female group. In the LVH group, LVMI presented a negative correlation with leptin and a positive correlation with NT-proBNP. Leptin emerged as an independent determinant of LVMI in both groups, and NT-proBNP in the LVH group. Low hemoglobin and leptin and increased calcium, NT-proBNP and dialysis vintage are associated with an increased risk of developing LVH. In ESKD patients on dialysis, LVH is associated with lower leptin values (especially in women), which are negatively correlated with LVMI, and with higher levels of biomarkers of myocardial stress/injury. Leptin and NT-proBNP appear as independent determinants of LVMI; dialysis vintage, hemoglobin, calcium, NT-proBNP and leptin emerged as predicting markers for LVH development. Further studies are needed to better understand the role of leptin in LVH in ESKD patients.

11.
Anal Chem ; 95(20): 8045-8053, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37172070

RESUMO

The adverse health effects of ambient carbonaceous particles (CPs) such as carbon black (CB), black carbon (BC), and brown carbon (BrC) are becoming more evident and depend on their composition and emission source. Therefore, identifying and quantifying these particles in biological samples are important to better understand their toxicity. Here, we report the development of a nonlinear optical approach for the identification of CPs such as CB and BrC using imaging conditions compatible with biomedical samples. The unique visible light fingerprint of CB and BrC nanoparticles (NPs) upon illumination with a femtosecond (fs) pulsed laser at 1300 nm excitation wavelength is an effective approach for their identification in their biological context. The emission from spectral features of these CPs was investigated with time-domain fluorescence lifetime imaging (FLIM) to further support their identification. This study is performed for different types of CPs embedded in agarose gel as well as in in vitro mammalian cells. The unique nonlinear emissive behavior of CP NPs used for their label-free identification is further complementary with fluorophores typically used for specific staining of biological samples thus providing the relevant bio-context.


Assuntos
Luz , Microscopia Óptica não Linear , Aerossóis/análise , Carbono , Imagem Óptica , Fuligem
12.
ACS Sens ; 8(6): 2340-2347, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37219991

RESUMO

Understanding the dynamics and distribution of medicinal drugs in living cells is essential for the design and discovery of treatments. The tools available for revealing this information are, however, extremely limited. Here, we report the application of surface-enhanced Raman scattering (SERS) endoscopy, using plasmonic nanowires as SERS probes, to monitor the intracellular fate and dynamics of a common chemo-drug, doxorubicin, in A549 cancer cells. The unique spatio-temporal resolution of this technique reveals unprecedented information on the mode of action of doxorubicin: its localization in the nucleus, its complexation with medium components, and its intercalation with DNA as a function of time. Notably, we were able to discriminate these factors for the direct administration of doxorubicin or the use of a doxorubicin delivery system. The results reported here show that SERS endoscopy may have an important future role in medicinal chemistry for studying the dynamics and mechanism of action of drugs in cells.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Preparações Farmacêuticas , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Antineoplásicos/uso terapêutico , Endoscopia , Neoplasias/tratamento farmacológico
13.
Proc Natl Acad Sci U S A ; 120(15): e2216934120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011188

RESUMO

Cells continuously sense external forces from their microenvironment, the extracellular matrix (ECM). In turn, they generate contractile forces, which stiffen and remodel this matrix. Although this bidirectional mechanical exchange is crucial for many cell functions, it remains poorly understood. Key challenges are that the majority of available matrices for such studies, either natural or synthetic, are difficult to control or lack biological relevance. Here, we use a synthetic, yet highly biomimetic hydrogel based on polyisocyanide (PIC) polymers to investigate the effects of the fibrous architecture and the nonlinear mechanics on cell-matrix interactions. Live-cell rheology was combined with advanced microscopy-based approaches to understand the mechanisms behind cell-induced matrix stiffening and plastic remodeling. We demonstrate how cell-mediated fiber remodeling and the propagation of fiber displacements are modulated by adjusting the biological and mechanical properties of this material. Moreover, we validate the biological relevance of our results by demonstrating that cellular tractions in PIC gels develop analogously to those in the natural ECM. This study highlights the potential of PIC gels to disentangle complex bidirectional cell-matrix interactions and to improve the design of materials for mechanobiology studies.


Assuntos
Matriz Extracelular , Hidrogéis , Matriz Extracelular/fisiologia , Comunicação Celular
14.
Arch Biochem Biophys ; 739: 109569, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36918042

RESUMO

Catalase (CAT), glutathione peroxidase (GPx) and Prx2 (peroxiredoxin 2) are the main antioxidant enzymatic defenses of erythrocytes. They prevent and minimize oxidative injuries in red blood cell (RBC) components, which are continuously exposed to oxidative stress (OS). The crosstalk between CAT, GPx and Prx2 is still not fully disclosed, as well as why these typically cytoplasmic enzymes bind to the RBC membrane. Our aim was to understand the interplay between CAT, GPx and Prx2 in the erythrocyte's cytosol and membrane. Under specific (partial) inhibition of each enzyme and increasing H2O2-induced OS conditions, we evaluated the enzyme activities and amounts, the binding of CAT, GPx and Prx2 to RBC membrane, and biomarkers of OS, such as the reduced and oxidized glutathione levels, thiobarbituric acid reactive substances (TBARS) levels, membrane bound hemoglobin and total antioxidant status. Our results support the hypothesis that when high levels of H2O2 get within the erythrocyte, CAT is the main player in the antioxidant protection of the cell, while Prx2 and GPx have a less striking role. Moreover, we found that CAT, appears to have more importance in the antioxidant protection of cytoplasm than of the membrane components, since when the activity of CAT is disturbed, GPx and Prx2 are both activated in the cytosol and mobilized to the membrane. In more severe OS conditions, the antioxidant activity of GPx is more significant at the membrane, as we found that GPx moves from the cytosol to the membrane, probably to protect it from lipid peroxidation.


Assuntos
Antioxidantes , Peroxirredoxinas , Catalase/metabolismo , Antioxidantes/metabolismo , Glutationa Peroxidase/metabolismo , Peroxirredoxinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Citosol/metabolismo , Eritrócitos/metabolismo , Estresse Oxidativo , Peroxidação de Lipídeos , Superóxido Dismutase/metabolismo
15.
Membranes (Basel) ; 13(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36676896

RESUMO

The use of polysulfone (PSU) hemodialysis (HD) membranes modified with bioactive compounds has gained relevance in chronic kidney disease (CKD) management. Compounds based on the 4-oxo-ß-lactam scaffold have outstanding inhibitory ability and selectivity for human neutrophil elastase (HNE). The present work aimed to evaluate the bioactivity and biocompatibility of PSU-based HD membranes doped with HNE inhibitors (HNEIs). For this, two 4-oxo-ß-lactam derivates (D4L-1 and D4L-2) synthesized in house were used, as well as a commercial HNEI (Sivelestat), for comparison purposes. Their HNE inhibition efficacy was evaluated in in vitro and ex vivo (incubations with human plasma) assay conditions. All biomaterials were bioactive and hemocompatible. The inhibitory capacity of the HNEIs and HNEI-PSU membranes in vitro was D4L-1 > D4L-2 > Sivelestat and D4L-2 > Sivelestat > D4L-1, respectively. In ex vivo conditions, both HNEIs and HNEI-PSU materials presented the same relative inhibitory ability (D4L-1 > D4L-2 > Sivelestat). The difference observed between in vitro and ex vivo conditions is most likely due to the inherent lipophilicity/hydrophobicity of each HNEI influencing their affinity and accessibility to HNE when trapped in the membrane. Compared to Sivelestat, both D4L-1 and D4L-2 (and the respective doped membranes) have more potent inhibition capabilities. In conclusion, this work reports the successful development of PSU membranes functionalized with HNEIs.

16.
Pediatr Res ; 93(7): 1856-1864, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36272998

RESUMO

BACKGROUND: At birth, human neonates are more likely to develop cholestasis and oxidative stress due to immaturity or other causes. We aimed to search for a potential association between bile acids profile, redox status, and type of diet in healthy infants. METHODS: A cross-sectional, exploratory study enrolled 2-month-old full-term infants (n = 32). We measured plasma bile acids (total and conjugated), and red blood cell (RBC) oxidative stress biomarkers. The type of diet (breastfeeding, mixed, formula) was used as an independent variable. RESULTS: Plasma total bile acids medium value was 14.80 µmol/L (IQR: 9.25-18.00). The plasma-conjugated chenodeoxycholic acid percentage (CDCA%) correlated significantly and negatively with RBCs membrane-bound hemoglobin percentage (MBH%) (r = -0.635, p < 0.01) and with RBC-oxidized glutathione (r = -0.403, p < 0.05) levels. RBC oxidative stress biomarkers (especially MBH%) were predictors of conjugated CDCA%, and this predictive ability was enhanced when adjusted for the type of diet (MBH, r = 0.452, p < 0.001). CONCLUSIONS: Our data suggest that the bile acid profile might play a role in the regulation of redox status (or vice versa) in early postnatal life. Eventually, the type of diet may have some impact on this process. IMPACT: The conjugated CDCA% in plasma is negatively correlated with biomarkers of RBC oxidative stress in healthy infants. Specific biomarkers of RBC oxidative stress (e.g. MBH, GSH, GSSG) may be promising predictors of conjugated CDCA% in plasma. The type of diet may influence the predictive ability of hit RBC oxidative stress biomarkers (e.g. MBH, GSH, GSSG). Our findings suggest a link between plasma bile acids profile and the RBC redox status in healthy infants, eventually modulated by the type of diet. The recognition of this link may contribute to the development of preventive and therapeutic strategies for neonatal cholestasis.


Assuntos
Ácidos e Sais Biliares , Colestase , Feminino , Humanos , Lactente , Recém-Nascido , Dissulfeto de Glutationa , Estudos Transversais , Oxirredução , Ácido Quenodesoxicólico , Biomarcadores , Estresse Oxidativo
17.
Gels ; 8(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36547337

RESUMO

The supramolecular gelation of small molecules is typically preceded by an external stimulus to trigger the self-assembly. The need for this trigger stems from the metastable nature of most supramolecular gels and can limit their applicability. Herein, we present a small urea-based molecule that spontaneously forms a stable hydrogel by simple mixing without the addition of an external trigger. Single particle tracking experiments and observations made from scanning electron microscopy indicated that triggerless gelation occurred in a similar fashion as the archetypical heat-triggered gelation. These results could stimulate the search for other supramolecular hydrogels that can be obtained by simple mixing. Furthermore, the mechanism of the heat-triggered supramolecular gelation was elucidated by a combination of molecular dynamics simulations and quantitative NMR experiments. Surprisingly, hydrogelation seemingly occurs via a stepwise self-assembly in which spherical nanoparticles mature into an entangled fibrillary network.

18.
Cell Mol Life Sci ; 79(11): 540, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197517

RESUMO

Glycine receptors (GlyRs) are ligand-gated pentameric chloride channels in the central nervous system. GlyR-α3 is a possible target for chronic pain treatment and temporal lobe epilepsy. Alternative splicing into K or L variants determines the subcellular fate and function of GlyR-α3, yet it remains to be shown whether its different splice variants can functionally co-assemble, and what the properties of such heteropentamers would be. Here, we subjected GlyR-α3 to a combined fluorescence microscopy and electrophysiology analysis. We employ masked Pearson's and dual-color spatiotemporal correlation analysis to prove that GlyR-α3 splice variants heteropentamerize, adopting the mobility of the K variant. Fluorescence-based single-subunit counting experiments revealed a variable and concentration ratio dependent hetero-stoichiometry. Via cell-attached single-channel electrophysiology we show that heteropentamers exhibit currents in between those of K and L variants. Our data are compatible with a model where α3 heteropentamerization fine-tunes mobility and activity of GlyR-α3 channels, which is important to understand and tackle α3 related diseases.


Assuntos
Receptores de Glicina , Transmissão Sináptica , Processamento Alternativo/genética , Ligantes , Mutação , Receptores de Glicina/genética
19.
Biomedicines ; 10(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36289903

RESUMO

Chronic kidney disease (CKD) is commonly associated with a high burden of comorbidities and poor clinical outcomes. Malnutrition-inflammation-atherosclerosis syndrome is common in the more severe stages of CKD, suggesting a close interplay for these three comorbid conditions. Both malnutrition and obesity are associated with a disturbed adipokine profile and inflammation, contributing to a higher risk of cardiovascular disease (CVD) events. Adiponectin and leptin have important roles in carbohydrate and lipid metabolism, and in the inflammatory process. The effects of adiponectin and leptin alterations in CKD, which are usually increased, and their association with the different comorbidities found in CKD, will be focused on to understand their crosstalk with the risk of CVD events. Nonetheless, although adiponectin and leptin contribute to a higher risk of CVD events, further studies are warranted to fully clarify their roles, especially when different comorbidities exist.

20.
Bio Protoc ; 12(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35978571

RESUMO

Over the past years, research has made impressive breakthroughs towards the development and implementation of 3D cell models for a wide range of applications, such as drug development and testing, organogenesis, cancer biology, and personalized medicine. Opposed to 2D cell monolayer culture systems, advanced 3D cell models better represent the in vivo physiology. However, for these models to deliver scientific insights, appropriate investigation techniques are required. Despite the potential of fluorescence microscopy to visualize these models with high spatial resolution, sample preparation and imaging assays are not straightforward. Here, we provide different protocols of sample preparation for fluorescence imaging, for both matrix-embedded and matrix-free models ( e.g ., organoids and spheroids, respectively). Additionally, we provide detailed guidelines for imaging 3D cell models via confocal multi-photon fluorescence microscopy. We show that using these protocols, images of 3D cell culture systems can be obtained with sub-cellular resolution. Graphical abstract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA